977 research outputs found

    Vulnerabilities in Quantum Key Distribution Protocols

    Full text link
    Recently proposed quantum key distribution protocols are shown to be vulnerable to a classic man-in-the-middle attack using entangled pairs created by Eve. It appears that the attack could be applied to any protocol that relies on manipulation and return of entangled qubits to create a shared key. The protocols that are cryptanalyzed in this paper were proven secure with respect to some eavesdropping approaches, and results reported here do not invalidate these proofs. Rather, they suggest that quantum cryptographic protocols, like conventional protocols, may be vulnerable to methods of attack that were not envisaged by their designers.Comment: 6 pages, 1 figur

    Genetic Algorithms for Redundancy in Interaction Testing

    Full text link
    It is imperative for testing to determine if the components within large-scale software systems operate functionally. Interaction testing involves designing a suite of tests, which guarantees to detect a fault if one exists among a small number of components interacting together. The cost of this testing is typically modeled by the number of tests, and thus much effort has been taken in reducing this number. Here, we incorporate redundancy into the model, which allows for testing in non-deterministic environments. Existing algorithms for constructing these test suites usually involve one "fast" algorithm for generating most of the tests, and another "slower" algorithm to "complete" the test suite. We employ a genetic algorithm that generalizes these approaches that also incorporates redundancy by increasing the number of algorithms chosen, which we call "stages." By increasing the number of stages, we show that not only can the number of tests be reduced compared to existing techniques, but the computational time in generating them is also greatly reduced.Comment: Submitted to Genetic and Evolutionary Computation Conference 2020 (GECCO '20

    Coherent and robust high-fidelity generation of a biexciton in a quantum dot by rapid adiabatic passage

    Get PDF
    A biexciton in a semiconductor quantum dot is a source of polarization-entangled photons with high potential for implementation in scalable systems. Several approaches for non-resonant, resonant and quasi-resonant biexciton preparation exist, but all have their own disadvantages, for instance low fidelity, timing jitter, incoherence or sensitivity to experimental parameters. We demonstrate a coherent and robust technique to generate a biexciton in an InGaAs quantum dot with a fidelity close to one. The main concept is the application of rapid adiabatic passage to the ground state-exciton-biexciton system. We reinforce our experimental results with simulations which include a microscopic coupling to phonons.Comment: Main manuscript 5 pages and 4 figures, Supplementary Information 5 pages and 3 figures, accepted as a Rapid Communication in PRB. arXiv admin note: text overlap with arXiv:1701.0130

    A Survey of Binary Covering Arrays

    Get PDF
    Binary covering arrays of strength t are 0–1 matrices having the property that for each t columns and each of the possible 2[superscript t] sequences of t 0's and 1's, there exists a row having that sequence in that set of t columns. Covering arrays are an important tool in certain applications, for example, in software testing. In these applications, the number of columns of the matrix is dictated by the application, and it is desirable to have a covering array with a small number of rows. Here we survey some of what is known about the existence of binary covering arrays and methods of producing them, including both explicit constructions and search techniques

    Demonstrating the decoupling regime of the electron-phonon interaction in a quantum dot using chirped optical excitation

    Get PDF
    Excitation of a semiconductor quantum dot with a chirped laser pulse allows excitons to be created by rapid adiabatic passage. In quantum dots this process can be greatly hindered by the coupling to phonons. Here we add a high chirp rate to ultra-short laser pulses and use these pulses to excite a single quantum dot. We demonstrate that we enter a regime where the exciton-phonon coupling is effective for small pulse areas, while for higher pulse areas a decoupling of the exciton from the phonons occurs. We thus discover a reappearance of rapid adiabatic passage, in analogy to the predicted reappearance of Rabi rotations at high pulse areas. The measured results are in good agreement with theoretical calculations.Comment: Main manuscript 5 pages and 4 figures, Supplementary Information 5 pages and 3 figures, submitted to PR

    Finding Bugs in Cryptographic Hash Function Implementations

    Get PDF
    Cryptographic hash functions are security-critical algorithms with many practical applications, notably in digital signatures. Developing an approach to test them can be particularly difficult, and bugs can remain unnoticed for many years. We revisit the NIST hash function competition, which was used to develop the SHA-3 standard, and apply a new testing strategy to all available reference implementations. Motivated by the cryptographic properties that a hash function should satisfy, we develop four tests. The Bit-Contribution Test checks if changes in the message affect the hash value, and the Bit-Exclusion Test checks that changes beyond the last message bit leave the hash value unchanged. We develop the Update Test to verify that messages are processed correctly in chunks, and then use combinatorial testing methods to reduce the test set size by several orders of magnitude while retaining the same fault-detection capability. Our tests detect bugs in 41 of the 86 reference implementations submitted to the SHA-3 competition, including the rediscovery of a bug in all submitted implementations of the SHA-3 finalist BLAKE. This bug remained undiscovered for seven years, and is particularly serious because it provides a simple strategy to modify the message without changing the hash value returned by the implementation. We detect these bugs using a fully-automated testing approach

    The mediating effect of task presentation on collaboration and children's acquisition of scientific reasoning

    Get PDF
    There has been considerable research concerning peer interaction and the acquisition of children's scientific reasoning. This study investigated differences in collaborative activity between pairs of children working around a computer with pairs of children working with physical apparatus and related any differences to the development of children's scientific reasoning. Children aged between 9 and 10 years old (48 boys and 48 girls) were placed into either same ability or mixed ability pairs according to their individual, pre-test performance on a scientific reasoning task. These pairs then worked on either a computer version or a physical version of Inhelder and Piaget's (1958) chemical combination task. Type of presentation was found to mediate the nature and type of collaborative activity. The mixed-ability pairs working around the computer talked proportionally more about the task and management of the task; had proportionally more transactive discussions and used the record more productively than children working with the physical apparatus. Type of presentation was also found to mediated children's learning. Children in same ability pairs who worked with the physical apparatus improved significantly more than same ability pairs who worked around the computer. These findings were partially predicted from a socio-cultural theory and show the importance of tools for mediating collaborative activity and collaborative learning
    • …
    corecore